49 research outputs found

    Powers of Hamilton cycles in pseudorandom graphs

    Full text link
    We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph GG is (ε,p,k,)(\varepsilon,p,k,\ell)-pseudorandom if for all disjoint XX and YV(G)Y\subset V(G) with Xεpkn|X|\ge\varepsilon p^kn and Yεpn|Y|\ge\varepsilon p^\ell n we have e(X,Y)=(1±ε)pXYe(X,Y)=(1\pm\varepsilon)p|X||Y|. We prove that for all β>0\beta>0 there is an ε>0\varepsilon>0 such that an (ε,p,1,2)(\varepsilon,p,1,2)-pseudorandom graph on nn vertices with minimum degree at least βpn\beta pn contains the square of a Hamilton cycle. In particular, this implies that (n,d,λ)(n,d,\lambda)-graphs with λd5/2n3/2\lambda\ll d^{5/2 }n^{-3/2} contain the square of a Hamilton cycle, and thus a triangle factor if nn is a multiple of 33. This improves on a result of Krivelevich, Sudakov and Szab\'o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403--426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.Comment: 30 pages, 1 figur
    corecore